Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
BMC Infect Dis ; 22(1): 556, 2022 Jun 18.
Article in English | MEDLINE | ID: covidwho-1962756

ABSTRACT

BACKGROUND: SARS-CoV-2 is known to transmit in hospital settings, but the contribution of infections acquired in hospitals to the epidemic at a national scale is unknown. METHODS: We used comprehensive national English datasets to determine the number of COVID-19 patients with identified hospital-acquired infections (with symptom onset > 7 days after admission and before discharge) in acute English hospitals up to August 2020. As patients may leave the hospital prior to detection of infection or have rapid symptom onset, we combined measures of the length of stay and the incubation period distribution to estimate how many hospital-acquired infections may have been missed. We used simulations to estimate the total number (identified and unidentified) of symptomatic hospital-acquired infections, as well as infections due to onward community transmission from missed hospital-acquired infections, to 31st July 2020. RESULTS: In our dataset of hospitalised COVID-19 patients in acute English hospitals with a recorded symptom onset date (n = 65,028), 7% were classified as hospital-acquired. We estimated that only 30% (range across weeks and 200 simulations: 20-41%) of symptomatic hospital-acquired infections would be identified, with up to 15% (mean, 95% range over 200 simulations: 14.1-15.8%) of cases currently classified as community-acquired COVID-19 potentially linked to hospital transmission. We estimated that 26,600 (25,900 to 27,700) individuals acquired a symptomatic SARS-CoV-2 infection in an acute Trust in England before 31st July 2020, resulting in 15,900 (15,200-16,400) or 20.1% (19.2-20.7%) of all identified hospitalised COVID-19 cases. CONCLUSIONS: Transmission of SARS-CoV-2 to hospitalised patients likely caused approximately a fifth of identified cases of hospitalised COVID-19 in the "first wave" in England, but less than 1% of all infections in England. Using time to symptom onset from admission for inpatients as a detection method likely misses a substantial proportion (> 60%) of hospital-acquired infections.


Subject(s)
COVID-19 , Cross Infection , COVID-19/epidemiology , Cross Infection/epidemiology , Hospitalization , Hospitals , Humans , SARS-CoV-2
2.
Infect Prev Pract ; 4(1): 100192, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1540723

ABSTRACT

Many infection prevention and control (IPC) interventions have been adopted by hospitals to limit nosocomial transmission of SARS-CoV-2. The aim of this systematic review is to identify evidence on the effectiveness of these interventions. We conducted a literature search of five databases (OVID MEDLINE, Embase, CENTRAL, COVID-19 Portfolio (pre-print), Web of Science). SWIFT ActiveScreener software was used to screen English titles and abstracts published between 1st January 2020 and 6th April 2021. Intervention studies, defined by Cochrane Effective Practice and Organisation of Care, that evaluated IPC interventions with an outcome of SARS-CoV-2 infection in either patients or healthcare workers were included. Personal protective equipment (PPE) was excluded as this intervention had been previously reviewed. Risks of bias were assessed using the Cochrane tool for randomised trials (RoB2) and non-randomized studies of interventions (ROBINS-I). From 23,156 screened articles, we identified seven articles that met the inclusion criteria, all of which evaluated interventions to prevent infections in healthcare workers and the majority of which were focused on effectiveness of prophylaxes. Due to heterogeneity in interventions, we did not conduct a meta-analysis. All agents used for prophylaxes have little to no evidence of effectiveness against SARS-CoV-2 infections. We did not find any studies evaluating the effectiveness of interventions including but not limited to screening, isolation and improved ventilation. There is limited evidence from interventional studies, excluding PPE, evaluating IPC measures for SARS-CoV-2. This review calls for urgent action to implement such studies to inform policies to protect our most vulnerable populations and healthcare workers.

3.
BMC Med ; 18(1): 270, 2020 09 03.
Article in English | MEDLINE | ID: covidwho-742409

ABSTRACT

BACKGROUND: The COVID-19 pandemic has placed an unprecedented strain on health systems, with rapidly increasing demand for healthcare in hospitals and intensive care units (ICUs) worldwide. As the pandemic escalates, determining the resulting needs for healthcare resources (beds, staff, equipment) has become a key priority for many countries. Projecting future demand requires estimates of how long patients with COVID-19 need different levels of hospital care. METHODS: We performed a systematic review of early evidence on length of stay (LoS) of patients with COVID-19 in hospital and in ICU. We subsequently developed a method to generate LoS distributions which combines summary statistics reported in multiple studies, accounting for differences in sample sizes. Applying this approach, we provide distributions for total hospital and ICU LoS from studies in China and elsewhere, for use by the community. RESULTS: We identified 52 studies, the majority from China (46/52). Median hospital LoS ranged from 4 to 53 days within China, and 4 to 21 days outside of China, across 45 studies. ICU LoS was reported by eight studies-four each within and outside China-with median values ranging from 6 to 12 and 4 to 19 days, respectively. Our summary distributions have a median hospital LoS of 14 (IQR 10-19) days for China, compared with 5 (IQR 3-9) days outside of China. For ICU, the summary distributions are more similar (median (IQR) of 8 (5-13) days for China and 7 (4-11) days outside of China). There was a visible difference by discharge status, with patients who were discharged alive having longer LoS than those who died during their admission, but no trend associated with study date. CONCLUSION: Patients with COVID-19 in China appeared to remain in hospital for longer than elsewhere. This may be explained by differences in criteria for admission and discharge between countries, and different timing within the pandemic. In the absence of local data, the combined summary LoS distributions provided here can be used to model bed demands for contingency planning and then updated, with the novel method presented here, as more studies with aggregated statistics emerge outside China.


Subject(s)
Coronavirus Infections , Health Care Rationing , Length of Stay , Pandemics/statistics & numerical data , Pneumonia, Viral , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Health Care Rationing/methods , Health Care Rationing/trends , Hospital Bed Capacity , Hospitalization/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Length of Stay/statistics & numerical data , Length of Stay/trends , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL